

Overview Terrestrial Planet Finder Coronagraph System Studies

Virginia Ford
TPF Coronagraph
System Manager

A NASA Origins Missio

TPF Coronagraph System Studies

TPF Architecture Studies

JPL

Coronagraph Background

History

- ~1850: Astronomers started trying to create an instrument that would block sunlight to study the sun's corona
- 1932: Astronomer Bertrand Lyot built 1st working coronagraph

Lyot's contribution:

- Stray sunlight, diffraction scatter, & atmospheric effects overwhelming the corona
 - » On the top of a mountain, very smooth optics
- Diffraction from the telescope aperture and occulting mask can be controlled by collimating the light, adding occulting mask & diffraction stop
 - » equivalent to a mathematical Fourier transform
 - » Kicks diffracted light out to the edges of the field where it can be blocked with a Lyot stop

TPF Coronagraph Challenge:

- Same problem with stray light, diffraction scatter and environmental effects star light easily overwhelms an earth-like planet 10¹⁰ contrast
- Use WFS&C, advanced technology to reach solution

TPF Coronagraph Description - Optics

TPF Coronagraph Minimum Mission Conceptual Design

A NASA **Origins** Missio

Minimum Mission Requirements Flowdown JPL

	Science Requirements		Derived Requirements	Engineering Choices	Wave	Front Error Allocation	Derived Requirements	Tall Tent Poles
Terrestrial Planet Finder Mission	# Core Stars = 30					WF Sensing/Control = 1.12E-11	IFU Detection	6m Aperture
	Core Star Type = F, G, K		Search Duration = TBD: star dependent OHZ period		1.6E-11	Amplitude Uniformity = 1.5E-12	Dual Polarization & coating uniformity	3 /D
	Minimum Science Requirements		' 'isit Rate = TBD: star dependent IHZ		Static Errors = 1.6E-11	Mask Imperfections = 3.4E-12	Precision Masks	Pol Splitting and uniform coatings
	Search Completeness = 95%		IWA = 82 mas	IWA margin = 10%	Stati	Pointing error leakage = 6.4e-12	Fine pointing = 1 mas	Mask Fab & Testing
	HZ relative to Sun = .7 to 1.5 AU			Angular Resolution		Dynamic effects Leakage = 2E-11		90x90 DM
	CHZ realtive to Sun = .9 to 1.1 AU		Aperture Size = 6m at /D)			Structural Deformation Beamwalk = 2.0E-12	Optics power spectrum & allowed motion	Stiff structure
	Wavelength Range = .5 to .8 μm		DM Actuators = 90x90			Optics Deformation = 8.59E-12	Stability = 1A PM, 1/4A SM, 1/16A small optics	Locking mechanisms
	Detect Giant Planets - 5AU at 10 pc	-	OWA = 500 mas	Edge Roll Off Factor = 1.33	Dynamic Errors = 4.9E-11	Structural Deformation Abberations = 9.38E-12	PM - SM stability = 1nm	Active Isolation
L ₁	Planet albedo = Earth	1E-10	Wavefront error = 6.5E-11		ic Errors	Rigid Body Beamwalk = 2.28E-12	Rigid Body Pointing = 10mas	Thermal Controls
<u> </u>	Planet size = Earth over HZ	contrast = 11	Background error = 1.5E-11		Dynam	Thermal Effects leakage = 2E-11	Optics Temp = 25 ±3°K	V-groove Thermal Shade
	Planet size = 1/2 Earth over CHZ	COU	Reserve = 2.0E-11	Q=1		Structural Deformation Beamwalk = 2.08E-12	Optics Temp Stabiity = 1 m°K	Laser Metrology
A NASA Drigins Missio	Spectral resoluton = 75		Search Mode integration time = 8 hrs			Optics Deformation = 8.59E-12	PM - SM stability = 1nm	
n	Spectral Mode 3?//D (or 8m at 4 ? Terrestrial Planet Finder Coronagraph System							
Terrestrial Planet Finder Coronagraph System Pg								

Tall Tent Poles

Issue	Studies	Expo Information		
Large Primary Mirror	TDM study	poster & presentation		
Uniform Coatings	Kodak	presentation		
Polarization	JPL, SWG	work in progress		
Mask Fabrication & Testing	JPL lab and contracts	poster & presentation		
90x90 DM	Xinetics, Boston Micromachines	presentation		
	Architecture - error sensitivity	presentation		
Structure Stiffness	DT & materials characterization	poster & presentation		
Thermal Controls	Design Team modeling	poster & presentation		
V-groove Thermal Shade	Design Team modeling	poster & presentation		
Active Isolation	Industry	poster		
Precision Mechanisms	JPL / Industry	yet to be investigated		